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Speculation continues on the role of protonated cyclopropanes, "free" or "hot" cations, 

2-4 
ion-pairs, et al. as intermediates in the deamination of primary aliphatic amines. A be- 

lief that knowledge of the stereoselectivity characterizing the formation5 of trans-1,2- 

dimethylcyclopropane 2) in the deamination of optically active 3-methyl-2-butylamine should 

provide insight into these questions prompted the experiments described below. 
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Decomposition of diazonium ion 1 gave a product mixture from which a pure CgH1o frac- 
+W 

tion, bp 25-40'. was obtained.5 VPC analysis established the presence of&, cis-1,2-dimethyl- 

cyclopropane 2, Z-methyl-1-butene, 2-methyl-Z-butene and 3-methyl-1-butene and quantitatively 

determined 2. Measurement of the optical rotation of a diglyme solution of the CgH10 fraction 
I\M 

obtained from optically activeA defined the specific activity ofLand hence the stereo- 

chemistry of the conversion 1 +z, 
M. 

since 2 is the sole chiral component of the hydrocarbon 

fraction and the absolute configuration and rotation of optically pure 3-methyl-2-butylamine 
7-9 

and 26 are known. The fact that the same specific rotation for optically pure? is deduced 

from the observed rotation of a diglyme solution of either pureAor a hydrocarbon mixture 

containing 13% 2 confirms our experimental procedure.6 

3579 



3580 No. 39 

Table I. Stereochemistry of Z'rans-l,P-Dimethylcyclopropane from the Deamination of 

Optically Active 3-Methyl-2-butylamine 

Reaction 
Conditions 

Trcma-1,2-dimethylcyclopropanaa~c 

05D [u15D % Optical X Net 

Purity Inversiond 

HClo,/H,o/NaNo,e +2.69 78 +.21 +3.6 7.8 10 

HOAc/NaNOp -1.94 55 -.36 -15 33 59 

+2.53 72 +.60 il8 40 55 

+2.53 72 +.66 +19 41 57 

CHC1,/RONOf -1.17 33 -.71 -10 21 64 

-1.17 33 -.34 -10 22 66 

'All rotations measured in a 2 dm tube. 
b 
Rotations refer to neat material which when 

Optically pure has [ulz4D f 3.5'. 'Rotations refer to diglyme solutions containing 10-20X 
of a hydrocarbon mixture whose composition wis solvent independent and which contained ~10% 
of& Optically purezhas [u]*'D + 46'. 

fContained 1 mole ROAc/mole RNR2. 

(-)-2_ is R:R and (-)-amine is R. epH = 4. 

The data of Table I establish thatAis formed with a high degree of stereoselectivity 

in acetic acid and chloroform but with nearly total racemization in water. As expected, our 

observed stereoselectivity for intramolecular allcyl migration toward a potential secondary 

carbocation is lover than that for the same process when a primary carbocation is involved. 

Net inversion exceeds 85% for methyl migration in the deamination of optically active neopen- 

tylamine-l-d (HOAC).~~'~' Intermolecular SN displacements are similarly less stereoselective 

for set-alkyl diazonium ions: 28%(HOAc)-23%@20) net inversion for 2-butylamine versus 

69%(HOAc) for 1-butylamine. 12,13 These differences in stereoselectivity for ssc- and prim- 

alkyldiazonium ions are minimum differences, since diaaoalkane formation and its concomitant 

racemization are more significant for the latter. 
3c 

The available data justify three generalizations about the transformation of 1 into 2: 
UL VT 

(1) The 3-methyl-2-butyl cation probably intervenes, at least in aqueous solution. It 

best accounts' for the production of highly racemic 2 in Hz0 and of trace amounts of Land 3 
NVU &.V. 

in the deamination of isopentylamine.5 Mechanism AI_-3 of eq 1 introduces this cation in a 

simple manner. Mechanism BI_4, with direct conversion ofA to 2 and subsequent opening of and 

reclosing to lC, or a racemization process involving equilibrating methyl-bridged ions, cannot 

be excluded. 

Mechanisms A and B equally well rationalize the higher net inversion encountered in CHC13 

and HOAc since these less polar solvents should give shorter-lived cations. 
3c In A, 
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Table II. Protonated Cyclopropanes from the Deamination of Alkylamines in HOAC 

Diazonium Ion 
% Cyclopropanes 
in Alkane Fractiona 

Structure of Possible Protonated Cyclopropanes 

X-Cl&-----H 

,_~;;JL?& 

ca,x 
: o‘, 

\ C)HY---‘;HZ 

Name X Y Name X Y 2 

4 = CH3CH2CH2N2 + 10 j$ H H s H H H 

,5_= (CH3)2CHCH2N2+ 5 5E H Me 5C H Me H 
*Ic - 

6_= CH3(CH2)3N2+ 1 6E Me H f$ Me H Ii 

L= CH,CH$HN,+cH, 1 x Me H 
w 2 H Me H 

1 = (CH3)2CHCHN2+CH3 18 1E Me Me 1C H Me Me 
I*r 

aFrom refs. 3, 5 or references therein. 

cyclization of the initial cation will be more rapid while in B deprotonation via B4 will com- 

pete more favorably with Bp. Neither A or B explains why net inversion in CHC13 does not exceed 

that in HOAc to a larger extent, 
3c 

but a suitable blend of A,B, conformational 
12 

and counter- 

ion2 effects, and stereospecific front-side rearrangements 
14 

seem adequate to account for this 
la 

or any3 observation. 

(2) Introduction of a protonated cyclopropane (such as 2) as the immediate precursor of 

2,3 offers the best rationalization for a) the large amount of 2,3 produced by 1; b) the data 
*nY rwlu 

of Tables I and II; c) the tentative observation 
la 

that aqueous decomposition of&yields 

3-methyl-2-butanol of net retained configuration. Definitive evidence for any protonated 

cyclopropane other than C3H7 ' is lacking,3'4 except possibly in the work of Kirmse and Arold. 
11 

The most obvious alternative mechanism for formation of 2,3 is D1, a 1,3-elimination by 1 
*rpI fl uu 

and/or the 3-methyl-2-butyl cation. If D holds, we expect the yield of methylcyclopropane from 

the 2-butyldiazonium ion (7) to surpass that of 2,3 from 1, since the latter reaction competes 
&V" NY V+ 

against a more advantageous 1,2-hydride shift (2' + 3“ cation)5'15 and results in a more highly 

strained cyclopropane derivative. 
16 

We also expect the counterion to play a prominent role in 

D in CHC13 and HOAc, especially in the former, and to promote production of 2 with retained 

configuration. Since neither expectation is fulfilled (Table 1,II) mechanism D cannot 

predominate. 

(3) Decomposition of the n-propyldiazonium ion, A, leads to edge-protonated ion 4E, 4 but 

we believe 1 gives the corner-protonated ion lC, 
17 . 

If it yields a protonated cyclopropane at 
-,.w 

all. Ion 1C offers the best opportunity for charge stabilization by the two methyl groups. 
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Although edge-protonated ions s + E appear capable of rationalizing the trend in yields of 

cyclopropane derivatives from 4 - 7 (Table II), there is no obvious reason why 1E should afford 
-* Vvv 

so much 2 and 3. 
nn - 

In fact a unique class of intermediate cannot explain why Aproduces slightly 

less cyclopropane derivative than 4 while Agives far more than 7, since the relationship 
1pn 

between 5 and 4 is the same as that between 1 and 7. 
mV & _ MI 

1) 
2) 

3) 

4) 
5) 
6) 
7) 

8) 

9) 

10) 
11) 
12) 
13) 
14) 
15) 
16) 

17) 
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1E a "tautomer" of E, could be an intermediate in the formation of 1,2-dimethylcyclo- 
L 

propane5 and 3-methyl-2-butano111 from the deamination of 2-methyl-1-butylamine. 


